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A class of elliptical free-surface flows 
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(Received 27 August 1982) 

Exact solutions of the equations of motion for an inviscid fluid are rare. Using the 
formalism of John (1953), this paper presents a class of exact zero-gravity flows in 
which the free surface assumes the form of an ellipse having arbitrary but time- 
constant aspect ratio. The dynamically important region beneath the overturning 
crest of a breaking gravity wave is examined and the profile is found to  be remarkably 
well approximated by a 4 3  aspect-ratio ellipse. The range of examples presented 
includes high-resolution computations in both deep and shallow water, and also the 
plunger-generated laboratory waves of Miller ( 1976). 

The ellipse solution is shown to model qualitatively certain essential features of 
the numerical waves. A recent self-similar solution due to Longuet-Higgins (1981, 
1982), in which the free surface is a parametric cubic curve, is also discussed. 

1. Introduction 
As is often remarked, exact time-dependent solutions of the equations of motion 

for an inviscid fluid with a free surface are quite rare. One classical example is the 
so-called ellipsoid of Dirichlet (see Lamb 1932, Art. 382) in which the self-gravitating 
mass of fluid has an ellipsoidal surface. Longuet-Higgins (1972) presents a class of 
exact free-surface zero-gravity flows related to these ellipsoids, in which the two- 
dimensional surface may assume the form of either a variable ellipse or hyperbola, 
or a pair of parallel lines. Generalizations are shown to include the Dirichlet parabola 
(Longuet-Wiggins 1976), and also flows with rotating axes (Longuet-Higgins 1980). 
(In this latter paper i t  is suggested that the flow near the tip of a breaking gravity 
wave may be modelled by a rotating form of the Dirichlet hyperbola.) The rotational 
gravity wave of Gerstner (see Lamb 1932, Art. 251), and the pure capillary wave of 
Crapper (1957) are also well-known examples. 

In  this paper we present an exact free-fall solution to the equations of motion in 
which the free surface takes the form of an ellipse with a time-constant aspect ratio 
(being defined as the ratio major axis/minor axis). These flows are hence different 
in character to  the Dirichlet ellipses mentioned above, which instead preserve a 
constant cross-sectional area. The physical motivation for this study came from a 
consideration of the dynamically important region beneath the overturning crest of 
a breaking gravity wave, in which high fluid-particle accelerations may develop (see 
Peregrine, Cokelet & McIver 1980). 

I n  this context we have studied a wide variety of numerically generated breaking 
waves, in both deep and shallow water, and have found in each case that a certain 
section of the wave profile can be closely approximated by an ellipse of 4 3  aspect 
ratio. The region of this fit is demonstrated in figures 1-3. Figures 1 and 2 show two 
examples taken from a class of shallow-water breaking waves computed by New 

t Present address : Institute of Oceanographic Sciences, Crossway, Taunton, Somerset TA12DW. 
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FIQURE 1 (a, b ) .  For caption see facing page. 

(1983). Starting from initial conditions representing a steep steadily progressing wave 
on depth do = 0.200 (with wavelength h = 11, the computations were then carried out 
on depths d = 0.070 (figure 1, labelled ‘wave 1 ’ in this paper) and d = 0.132 (figure 2, 
labelled ‘wave 2 ’). Figure 3 shows the motion developing from an initial deep-water 
sine wave of large amplitude (labelled ‘wave 3’) due to McIver (1982, private 
communication). All these computations were performed with a high resolution, using 
180 numerical particles in the free surface.t In each case, the section of the wave 

t The calculation method for the deep-water wave was based on that of Longuet-Higgins &, 
Cokelet (1976) ; for finite depth, a simple extension of this technique, described in New (1983), was 
employed. 
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FIGURE 1 .  Fits of .\/3 aspect-ratio ellipses to wave 1 .  Horizontal and vertical axes are z and y 
respectively ( A  = 1) .  -O-O--, wave profile, showing the extent of the fitted region; -------, 
ellipse. (a) t = 1.150; ( b )  1.300; ( c )  1.452; ( d )  1.604. 

profile fitted is indicated by the small circles, and throughout this region the 
coincidence is seen to be remarkable. 

The ellipses shown in these figures are of aspect ratio 4 3  and were fitted 
numerically using a technique based on the method of least squares. If the aspect 
ratio itself is now also allowed to vary, producing an even closer fit to  the same surface 
particles, its value typically becomes close to 4 3  when the wave is well developed, 
as shown in figure 4. 

Apart from this numerical evidence, support is also provided by Miller (1976), who, 
in a study of the surf zone, has produced a number of good-quality photographs of 
plunger-generated breaking waves in the laboratory. Figures 5 and 6 of the present 
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paper show tracings from transparencies supplied by Miller, corresponding to figures 
1 and 2 respectively of his paper, and again show closely fitting ‘d3-ellipses’. In 
particular, we see that the elliptical fit may even be a good approximation for some 
time after the ‘touchdown’ of the jet. 

This intriguing phenomenon naturally prompts a search for an exact self-similar 
solution to the equations of motion in which the free surface takes on the form of 
an ellipse of time-constant aspect ratio. After considering a simple case in $2 in which 
the flow is contained between two concentric circles, $3 uses the formalism of John 
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FIGURE 2. Fits of 4 3  aspect-ratio ellipses to  wave 2. For legend see caption to figure 1. 
(a) t = 1.620; (b) 1.680; (c) 1.740; (d) 1.800. 

(1953) to derive the ellipse solution. The aspect ratio is found to be constant but 
arbitrary in va1ue.t Then in $4, wave 2 is fitted accurately by ellipses of 4 3  aspect 
ratio, and the relevance of the solution to breaking waves is discussed. Finally, $5  
investigates a self-similar solution due to Longuet-Higgins (1981, 1982), in which the 
free surface is a parametric cubic curve. 

are not ! 
t Thus the free-surface profiles are self-similar. The velocity and acceleration fields, however, 
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FIQURE 3 (a, b). For caption see facing page. 

The class of elliptical free-surface flows developed in this paper adds to the body 
of known solutions of the exact equations of motion, and, although essentially in 
free fall, may be of especial relevance to many types of overturning gravity waves. 

2. A preliminary investigation 
Before embarking on a study of the class of elliptical flows, we first investigate a 

simple solution in which the fluid occupies the space between the two concentric 
circles r = R(t) and r = @to, where > R. We impose a pressure p = po  on the outer 
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FIQURE 3. Fits of 4 3  aspect-ratio ellipses to wave 3. For legend see caption to figure 1. 
(a) t = 1.086; ( b )  1.253; (c) 1.420; ( d )  1.587. 

surface, where p ,  is a constant. Since a fixed mass of air is trapped within the inner 
contour, we may take the pressure there to be p = p, /R2(t) .  The symmetric situation 
is shown in figure 7. 

Now suppose that the complex velocity potential is given as 

W(z,  t )  = 9 + i$ = f(t) + ig(t) + (A(t) + iB(t)) In z, (2.1) 

which represents a simple singularity a t  the origin. Heref(t), g ( t ) ,  A( t )  and B(t) are 
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FIGURE 4. Time dependence of the aspect ratios of the 'best-fit' ellipses: -O---O--, wave 1 ; 
--.---@-, wave2; -+ - - -+ - - ,  wave3.  

FIGURE 5 .  Laboratory wave of Miller (1976) and fitted ellipse of 4 3  aspect ratio. 

real functions of the time. Neglecting gravity, the fluid pressure p then satisfies 

The kinematic boundary conditions on the two surfaces yield 

A = RR, = REt, 
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FIGURE 6. Laboratory wave of Miller (1976) and fitted ellipse of 1 / 3  aspect ratio. 

FIGURE 7. The fluid configuration of 32 

with first integral representing the conservation of mass: 
&fz-Rz = M ,  

where M is a positive constant. Also, we have 

B =  -r, 
where 2~r is the constant circulation around any material curve. 
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FIQURE 8. (a)  The function F ( H )  for the case p,, = 0, see (2.7). -----, F ( H )  = C H / M - P .  
(a) Phase-plane trajectory of (2.7) for the case p ,  = 0. 

Substituting these results into the dynamic conditions on the two surfaces and 
subtracting gives 

M P  
= 2p0(&- 1)+ H(M+ H) ’ 

where H(t) zz R2(t).  Upon integration we then have 

C + 2po(1n H - H) 
ln( l+M/H)  

-P = F(H), say, aHg = 

where C is an arbitrary constant of integration, and may be chosen (along with H(O), 
p,, M and r )  to define the resulting motion. 
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FIGURE 9. (a) The function F ( H )  for the case p ,  > 0, see (2.7).  
( b )  Phase-plane trajectory of (2.7) for the case p ,  > 0. 

We now consider the phase-plane portraits of (2 .7 )  for two cases. Firstly, we 
suppose that the density of the air is negligible, and set p ,  = 0. Figure 8(a )  shows 
F ( H )  in this case, where C is positive. Clearly a solution only exists for H such that 
F ( H )  3 0, and the phase plane will be qualitatively as shown in figure 8 ( b ) .  We see 
that R(t) will in general contract to a minimum value (Ilkin) and then increase 
without limit. Only in the case of no circulation (f = 0) does the inner surface shrink 
to zero, since there is now no centrifugal acceleration to support the collapse. 

If, however, we take p ,  > 0, the motion oscillates between two finite limits as 
indicated in figures 9 ( a , b ) .  The solution typically ‘bounces’ a t  a larger minimum 
radius than in the case p ,  = 0 since the compression of the air inside the inner surface 
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produces an outward pressure gradient. Similarly, its rarefaction results in the finite 
maximum radius 

It is shown by Greenhow (1983) that the ellipse solution of $3  possesses a second 
p = 0 surface which in the physical plane closely surrounds the elliptical contour. The 
fluid, for which p > 0, is then contained between these two boundaries. Thus the 
behaviour of the ellipse solution may be qualitatively similar to that of the simple 
flow of the present section, which provides physical insight into the nature of the 
problem. 

3. Ellipse theory 
Longuet-Higgins (1976, 1982) demonstrates the power of a serni-Lagrangian 

method due to John (1953) for deriving zero-gravity frcc-surface flows. This method 
is now employed to derive the elliptical solution. 

Instead of considering the complex velocity potential W = @ + i$ as a function of 
the position z and the time t ,  we now suppose that both W and z are functions of 
t and a further variable w which at the free surface is real and Lagrangian (constant 
following a given fluid particle). Assuming gravity to act in the negative y-direction, 
John (1953) then shows that the dynamic condition of a pressure gradient normal 
to the free surface may be written as 

xt t  + ig = ir(w, t )  x,, (3.1) 

where r is real a t  the free surface but otherwise artibrary. Further, a velocity potential 
consistent with the motion of the free surface is written as 

W(w, t )  = z,.(w’, t )  z:(w’, t )  dw’. (3.2) r 
We seek a free-fall solution (9 = 0) of (3.1) in the form of an ellipsc having a constant 

aspect ratio by supposing 

z (w,  t )  = a(t)eix(t){+(1 +a)ei@(w, t )+1(1  2 -a)e-iWw,t) 1. (3.3) 

Here a( t )  represents the length of the major axis (0 = 0), inclined a t  an angle X ( t )  
to the horizontal x-direction, O(w, t )  is the fluid-particle orientation relative to the 
major axis, and the aspect ratio is l la.  The neglect of gravity may be to some extent 
justified, since for a well-formed breaking wave, the jet tip quickly attains a state 
of free fall, and the fluid accelerations in the ‘ellipse’ region may be as high as 49 
or 59. 

Substituting (3.3) into (3.1) and equating the coefficients of exp i(Xk0) separately 
to zero gives two complex equations. The real parts are 

At this point we remark that the aspect ratio has vanished from the problem and 
is thus arbitrary! Adding and subtracting first (3.4) and then (3.5) yields 

( 3 . 6 ~ )  

2% 6, = re,, (3 .6b)  

a,, - a(X; + 0;) = 0 ,  

( 3 . 6 ~ )  

( 3 . 6 d )  
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Now we see from (3.6a) that 0, is a function o f t  alone and from ( 3 . 6 b )  that r0, is 
hence also a function of only t .  Thus the w-variation in 0 is arbitrary and depends 
on the choice of the function r ( w ,  t ) .  This in turn implies that the branch points of 
the solution, as given by the vanishing of z,  (or 0,) when not annulled by a zero of 
( W,),, may be specified by the infinities of r (w,  t). For any physically realizable flow 
these must be contained outside the fluid domain. 

Integrating ( 3 . 6 c , d )  gives 
a2Xt = B,  ( 3 . 7 a )  

a2& = AB, (3.7 b )  

where A and B are real constants. Typically, from numerical comparisons of waves 
breaking from left to right, we observe that the fitted ellipse rotates clockwise, giving 
B < 0, and that fluid particles themselves also rotate clockwise relative to the ellipse, 
so that A > 0. From ( 3 . 7 )  we conclude that 

w, t )  = AX(t) + G ( w ) ,  (3 .8 )  

where G(w)  is arbitrary, so that any given fluid particle rotates relative to the ellipse 
exactly A times as fast as the ellipse itself rotates. This is investigated further in $4. 

Substituting ( 3 . 7 )  into ( 3 . 6 ~ )  and integrating once yields 

a; = (Caz-B2(1 +A2))/a2, (3 .9 )  

where C is a constant of integration which is necessarily positive. Thus a( t )  has a 
minimum value of amin = (B2( 1 + A2) /C)?  attained when a, = 0, a t  time t = to say. The 
ellipse can only contract to zero when B = 0. I n  this case there is no rotation and 
the analogy with $2  is apparent. 

Integrating ( 3 . 9 )  again yields 

a2(t) = C(t-to)2+a$in, (3.10) 

and finally from ( 3 . 7 ~ )  we obtain 

@ ( t o  - t )  
~ ( t )  = xo + (1 + .A2)-+ arctan I > (3 .11)  

amin 

where xo = ~ ( t , )  is another constant of the motion. Typically, for numerically- 
generated breaking waves, t < t o ,  so that both a( t )  and ~ ( t )  decrease as t increases. 

4. An elliptical fit 
Because the region of the elliptical free surface does not occupy a large portion of 

the complete wavelength i t  is only possible to  obtain fits of satisfactory accuracy 
if the numerical wave profile contains a large number of computational particles. 
Hence ellipses of 4 3  aspect ratio were fitted in detail to the three 180-point examples 
waves 1, 2 and 3 ,  a number of representative times being chosen for each to cover 
the period of jet ejection. For each profile, using a technique based on the method 
of least squares, an ellipse was fitted to a certain number (typically 2 0 )  of successive 
surface particles, which were chosen to produce the most accurate fit. The region of 
the free surface approximated in this way is indicated in figures 1-3. The results from 
these three examples are found to be similar in character, and systematic differences 
with the ellipse theory arise. For this reason, only the fit to wave 2 is discussed. 

Figure 10 shows the time variation of a( t )  and ~ ( t )  resulting from the numerical 
fitting, and also theoretical curves, (3 .10 )  and (3.1 1) respectively, which provide a 
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FIGURE 10. Timedependenceofa(t) andX(t): + , valuesofa(t)fromnumericalfittingof~3aspect-ratio 
ellipses to wave 2 ;  0, values of x ( t )  from numerical fitting of 2/3 aspect-ratio ellipses to wave 2 ;  
____-  , (3.10) with parameters as in (4.1); -.---.- , (3.11) with parameters as in (4.2). 

FIGURE 11.  Motion of the ellipse centre : 0, positions taken from numerical fitting of 4 3  aspect-ratio 
ellipses to wave 2 ; - + - - - - + - , a free-fall trajectory. 
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-0.2 1 
FIQURE 12. Hodograph comparison with ellipse theory : -, contour of numerical velocities, taken 
from wave 2 at t = 1.76; ------, region of doubtful accuracy in the numerical profile; ---.-.-.-, 
ellipse theory. Both curves are labelled with values of the fluid-particle orientation relative to the 
horizontal space axis, taken from the ellipse centre. 

satisfactory approximation. In  this way the parameters needed to specify the ellipse 
solution are found to be 

C = 0.02584, to = 1.8235, amin = 0.0248, (4.1) 

x0 = -48.5, A = 4.13, (4.2) 

from the theoretical curve for a( t ) ,  and 

from the curve for x ( t )  (hote that B = -9.38 x lo-* is determined from the value of 
amin). We see that the agreement in this figure is good a t  least between t = 1.70 and 
t = 1.76. Before t = 1.70 the elliptical profile may not be sufficiently developed to 
conform to the theoretical curves, and for t > 1.76 the discrepancies could be caused 
by the numerical solution losing accuracy, since breakdown of the method occurs a t  
t = 1.835. 

It should be noted that the ellipse theory of $3 is developed for a reference frame 
in which gravity is neglected, so that the solution should be in a state of free fall. 
The path of the ellipse centre in the present example is shown in figure 11,  and i t  
seems possible that the motion may be developing along the indicated free-fall 
trajectory. However, similar behaviour is not found for waves 1 and 3. This may be 
due in part to the proximity of the wave trough to  the ellipse region in these examples 
(see figures 1 and 3), preventing the ellipse from falling in the vertical direction. 

I n  spite of this difficulty, it is still worthwhile to make a comparison of the fluid- 
particle velocities predicted from the ellipse theory (with parameters as given in (4.1) 
and (4.2)) with the numerical values. Figure 12 shows a typical hodograph comparison 
(at t = 1.76) in which the labelling on each contour represents the particle orientation 
relative to the horizontal space axis (0* = O + x  degrees). The origin of the ellipse 
contour is a t  (u, w) = (0.341, - 0.024) corresponding to the instantaneous velocity of 
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FIQURE 13. Differences between the numerical velocities and those predicted by the ellipse theory : 
nnnrnnn, indication of the free surface, with the fluid shown shaded. (See also caption to figure 
12 for legend.) 
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FIQTJRE 14. Particle rotation around the ellipse (8* and x :  see text): 0-0, fluid particle 
contained in the region of the wave profile fitted by the ellipse; O-----O, fluid particle not within 
this region (the numbers of the computational particles followed are shown at the left-hand side 
of each trajectory) ; straight-line segments, with gradients indicated at the right-hand side. 
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the ellipse centre. We see that over the region of the elliptical fit ( 100° < 8* < 200~) 
not only are the shapes of the two curves similar, but also the angular dependence 
is well described. Figure 13 shows that the velocity differences are roughly in the 
direction of the tangent to the free surface, so that the systematic discrepancies imply 
an underestimation by the theory of the rotation rate of the fluid particles around 
the ellipse. 

To investigate this aspect further we have plotted, in figure 14, 8* against x for 
various numbered computational particles as they travel through the elliptical region. 
From the theory we have 

8 * ( w , t )  = ( A + l ) ~ ( t ) + G ( w ) ,  (4.3) 

so that the trajectory of each particle should be a straight line with slope A + 1 = 5.13. 
We see that, when the ellipse is ‘well-formed’ (i.e. t > 1.68), the particle paths are 
indeed almost linear, but with slopes varying from about 6.5 to 10.0, as we might 
expect. It would almost seem that the fluid particles are rotating too quickly to remain 
on the elliptical profile, being thrown outwards into the jet under centrifugal action. 
This figure indicates that we need to find a solution in which A = A ( o )  rather than 
an absolute constant. 

The elliptical flow does not of course model the discontinuity in velocity where 
the tip of the jet meets the forward face of the wave, and, in view of the differences 
between the predicted and computed velocities, a presentatyon of the accelerations 
is not thought to be worthwhile. Although the accelerations as given by the theory 
are qualitatively correct over the region fitted by the ellipse, pointing outwards from 
the fluid, they are significantly smaller than the computed values. In  any case we 
do not expect the predicted accelerations, symmetrical about the ellipse centre, to 
be a good model for the asymmetric situation in a breaking wave. 

5. A cubic description 
We have seen that the ellipse solution needs certain modification if i t  is t o  

accurately describe the flow beneath the overturning crest of a breaking gravity wave. 
An alternative solution due to Longuet-Higgins (1981, 1982) is now investigated, in 
which the free surface takes the form of a parametric cubic curve. 

Using the same formalism as in 93, Longuet-Higgins shows that 

z(w, 7 )  = i7w3 + 3r2w2 - 2ir3w - +r4, 

2 
r (w ,  7 )  = --, 

7 

(5.1 a )  

(5.1 6) 

is a free-fall solution of (3.1). This is in fact the flow z = -P3 of these papers, and, 
to distinguish i t  from the ‘real’ (computed) time of $83 and 4, we take 7 as the new 
time variable. The free surface is now described in the self-similar form 

( 5 . 2 ~ )  

( 5 . 2 6 )  Y _ -  
74 - P3 - 2P> 

where ,u 5 W / T  is a real parameter. Here we take 7 as negative and increasing to zero 
so that the flow is contracting. The fluid region corresponds to the exterior of’ thc 
above cubic curve, which is shown in figure 15. (Here we have taken 171 = 0.3452 
to give an appropriate scaling for a later comparison.) 
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FIGURE 15. Self-similar cubic solution (5.2); the curve is labelled with values of p (see text): -----f 

indicates particle motion ; ----, a 4 3  aspect-ratio ellipse. 
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FIGURE 16. A profile comparison: -, (5.2) with 171 = 0.3452 and axes rotated through -46.5O; 
0, computational particles in wave 2 at t = 1.76. 

Also shown in this diagram is an example of a 2/3 aspect-ratio ellipse which is 
practically indistinguishable from the present cubic curve for a large range of 
,u (Ip I < 0.8). This agreement clearly means that any portion of the wave profile which 
is closely fitted by the ellipse may also be approximated by the cubic. A typical 
example, taken from wave 2 at  time t = 1.76, is given as figure 16, and we note that 
the cubic seems to provide a close fit for some considerable distance along the forward 
face of the wave. 
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FIGURE 17. Hodograph comparison with the cubic solution of (5.1): -, contour of numerical 
velocities, taken from wave 2 at t = 1.76; ----, velocities predicted from (5.1) (see text). Both 
curves are labelled with values of p. 

However, the corresponding hodograph comparison (figure 17) indicates that  the 
velocities are not so well given by the cubic. The axes of the present solution are 
rotated through - 46.5' and translated to  (u, v) = (0.39, - 0.05) to allow for the 
instantaneous orientation and velocity of the profile fit. Over the fitted region (say 
-0.5 < ,u < 1 .l) the only similarity between the two curves is that  the velocity vector 
rotates clockwise as p decreases: the contours are dissimilar in shape and the 
p-dependence is not well given. This diagram should be compared with figure 12, the 
velocities predicted from the ellipse theory, which seems to give a more realistic 
representation. 

One notable difference between the two solutions is that  the ellipse rotates, whereas 
the cubic solution P3 (by itself) does not. The major axis of the fitted ellipse in figures 
1-3 rotates (clockwise) through angles of 30°, 13' and 27' respectively, and for waves 
1 and 3 McIver (1982) finds that a numerically fitted cubic rotates through 2 2 O  in 
each case during the same time intervals. Similarly, in fitting the cubic solution P3 
to numerical data, Longuet-Higgins (1981,1982) obtains a rotation of 10'. To account 
for this rotation, which is small compared with the rotation of typical fluid particles, 
Longuet-Higgins suggests adding to P3 a small fraction of a second cubic solution 
given by 

(5.3) 

(5.4) so that 

where 77 is a small real constant. He finds that when Y,I = 0.1 the axes of the cubic 
do indeed rotate through approximately the required angle. 

The solution P3 by itself possesses no systematic fluid-particle circulation: as 7 
increases to zero, the p-value for any fixed fluid particle must increase to infinity 
without changing sign, so that the particles rotate away from the vertcx (p = 0) as 
shown in figure 15. However, it appears that  the addition of Q3 to the soIution 

Q3 = - io3 - 67 In 17 I w2 + 12b2(ln 17 I - 3) w + 4 ~ ~ ( 1 n  171 -$), 

= - p  3 -. ~ Q 3 j  
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produces a modification of the velocity field which. for typical values of r ,  is 
proportionally much larger than the constant q and which does indeed give a 
systematic rotation, thus improving the description of the fluid flow. This is an 
essential aspect of the problem which, as we have seen in 94, must be well modelled 
by any proposed solution : even though all the particles rotate in the correct direction 
in the ellipse theory (clockwise), the underestimation of the magnitude of this effect 
is thought to be the primary cause of the velocity differences. 

6. Discussion 
I n  this paper we show that a certain region of the surface profile beneath the 

overturning crest of a breaking gravity wave may be well approximated by an ellipse 
which has a time-constant aspect ratio equal to 4 3 .  Using the method of John (1953), 
the power ofwhich is demonstrated by Longuet-Higgins (1976), we derive an elliptical 
solution to the equations of motion which models qualitatively certain essential 
features of the fluid flow seen in numerically-generated waves. Although the ellipse 
ccntre should move in a free-fall trajectory, its precise motion cannot be determined 
from the present theory, which allows an arbitrary constant velocity to be added to 
the solution corresponding to a change of reference frame. This is made physically 
plausible when we consider that the ellipse is only a local solution which may be 
influenced by the rest of the wave. 

A similar flow due to Longuet-Higgins (1981, 1982), in which the free surface is 
a parametric cubic. curve, is also investigated. Although the wave profile beneath the 
overturning crest is again well approximated, the fluid-particle motion is found to 
be poorly described unless a second cubic solution is added. (Further improvements 
to the description of the flow-field are suggested by Greenhow (1983)!) 

The present ellipse theory shows that the solution may assume an arbitrary but 
time-constant aspect ratio. That all breaking waves so far investigated, in both deep 
and shallow water, possess a 2/3 aspect-ratio ellipse seems quite remarkable. 
Presumably this very definite shape is ‘forced’ in some way both by the flow intc 
the elliptical region from beneath the forward face of the wave, and also by the 
imposed pressure gradient from the ‘support region’ on the rear face (see Peregrine 
et al. 1980). This gives us hope that there may be some general underlying structure 
common to all overturning waves, and is an incentive for further work to be carried 
out. 
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